OBJECTIVE

This technical information details the new Power Cascade algorithm that can be selected within the OpenTherm page of the RegConfig Configurator.

CASCADE ALGORITHM FOR HEATING AND COOLING

The following image shows, within the OpenTherm page of the RegConfig, the position of the System Cascade Control Algorithm section and the Buffer Tank Compensation Temperature section:

The following image shows, within the OpenTherm page of the RegConfig, the position of the System Cascade control Algorithm section (blue) and the Buffer tank Compensation Temperature section (yellow):

The cascade algorithm can be of three types:

Enabled OpenTherm generators are those generators that have a number (which can range from 1, highest priority, to 8, lowest priority) in the Generators section (highlighted in green) on the OpenTherm page and not OFF in the box corresponding to the “Heat/Cool” column. The number indicates the priority of the call, so in the image below G1 and G3 generators have priority 1 (they are called first), while G2 has priority 2 and G4 priority 3:

Warning

Do not use G0 as it is the OpenTherm generator used with the DOT product, not with the REG system, therefore it is never considerate in the cascade logic.

POWER CASCADE CONTROL ALGORITHM

The aim of the Power Cascade Control Algorithm is to ensure that the system has a water temperature as close as possible to the set point calculated by switching on the required number of generators and trying to make them work as efficiently as possible. To do this, it is necessary to know the power supplied by the generators, the % of power corresponding to the maximum efficiency of the generator, and the water outlet temperature of the generator.

To define when to switch a generator on/off, the algorithm compares the minimum power supplied between the active generator (and not degraded by the system) with the PotUp and PotDown parameters (which will be illustrated below) after a settable minimum time has passed during which no change is made to the number of switched on generators, to allow the active generators to go full speed.

The addition or switching off of a generator must always observe the following 3 parameters:

Once the number of start/minimum/maximum has been defined, it is necessary to define the following parameters:

Attention: the powers are expressed in percentage, so if generators of different power are present, for example 24 kW and 35 kW, the same % power corresponds to a different real power. Moreover, some boilers give the real power output, so they consider 0% with boiler off, while with the flame on the power value read by the system is ≥ 15-17%, that is the minimum power at which they can modulate; other boilers instead indicate the % in relation to the useful regulation range, so with 0% they indicate that the boiler is working at the minimum of its modulation (probably 15-20% of the power rating), but still on. This may have an impact on the setting (although usually not a big one): for the former the minimum power = 30% probably indicates an actual 30%, while in the latter case the minimum power = 30% probably indicates roughly an actual 40% value, assuming its minimum is 15%, this would be [(100%-15%)*0,3+15%)];

MANAGEMENT OF DEGRADED GENERATORS

Two (non-mandatory) parameters are left to be set:

If left at zero, the algorithm does not manage degraded generators.

A generator is considered degraded if:

  1. The stop time is passed (that is the conditions during the pause following the addition/removal of a boiler are not considered);

  2. A generator is in heating or cooling demand (the DHW production is not considered);

  3. The power to which the generator is limited is bigger than the power degraded.

  4. The generator water outlet temperature is lower than the set point required of the generator less the temperature degraded (T water outlet < set point – temperature degraded, where the latter is a temperature delta K and not an absolute value). For example, if the set point is 40°C and the degraded temperature is 5 K, the generator temperature must drop below 35°C before it can be degraded, as long as the other four points also occur;

  5. The generator power output is lower that the “Power degraded” (which is an absolute power and not a power delta). For example, if the power degraded is 20%, the power output of the generator must drop below 20% before it can be degraded, as long as the other four points also occur.

If a generator is degraded, the system excludes it from all the calculations shown (minimum power calculation, maximum power for comparison with PotUp, PotDown, Gap, and Idle).

The result of the settings made is displayed at the top right of the OpenTherm “Generator Demand Status” page:

PHOTO TBD

Always referring to the image in the Generators section of the OpenTherm page:

note the following:

The lower part of the OpenTherm page shows, for each generator, the result of the heating and DHW demands (red frame) and the feedback from the generators to the REG System (yellow frame):

Highlighted in red:

Warning

If the generator is used for DHW production only, both the required temperature and the power are at zero, the values that are passed in case of DHW production are those that are displayed in Generator Demand Status (top right of OpenTherm page).

The OpenTherm page can manage boilers via OpenTherm protocol. In yellow are highlighted the values transmitted by the boiler, closely linked to how the generator manufacturer has implemented the OpenTherm protocol on the boiler itself (always refer to the generator’s manual). By hovering the mouse over the various rectangles/squares, a tag appears with an extended description:

ROTATION

With equal priority, ignition follows the numerical order of generators for the first ignition, while for subsequent ignitions the generators are rotated:

So, in the example above at the first ignition the order will be:

G1 → G3 → G2 → G4

At the second ignition:

G3 → G1 → G2 → G4

Warning

Domestic Hot Water production does not respond to the power cascade algorithm.